MENU

Properties of the Binary Black Hole Merger GW150914

Abbott, BP; Abbott, R; Abbott, TD; Abernathy, MR; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, RX; Adya, VB; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, OD; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, PA; A

PHYSICAL REVIEW LETTERS
2016
VL / 116 - BP / - EP /
abstract
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(-4)(+5) M-circle dot and 29(-4)(-4) M-circle dot; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be < 0.7 ( at 90% probability). The luminosity distance to the source is 410(-180)(+160) Mpc, corresponding to a redshift 0.09(-0.04)(+0.03) assuming standard cosmology. The source location is constrained to an annulus section of 610 deg(2), primarily in the southern hemisphere. The binary merges into a black hole of mass 62(-4)(+4) M-circle dot and spin 0.67(-0.07)(+0.05). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

AccesS level

Green Accepted, Green Published, Other Gold

Mentions data

PAPER MENTIONS
Physics
  •   Twitter
  • 109
  •   Wikipedia
  • 6
  •   News
  • 12
  •   Policy
  • 0

Mentions Chart

Influratio by dimension
  • Twitter
  • Wikipedia
  • News
  • Policy
PAPER MENTIONS
  •   Twitter
  • 109
  •   Wikipedia
  • 6
  •   News
  • 12
  •   Policy
  • 0
PROYECTO FINANCIADO POR PLAN NACIONAL DE INVESTIGACIÓN AGENCIA ESTATAL DE INVESTIGACIÓN, MINISTERIO DE CIENCIA E INNOVACIÓN. PID2019-109127RB-I00