MENU

Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice

Agustin-Pavon, C; Mielcarek, M; Garriga-Canut, M; Isalan, M

MOLECULAR NEURODEGENERATION
2016
VL / 11 - BP / - EP /
abstract
Background: Synthetic zinc finger (ZF) proteins can be targeted to desired DNA sequences and are useful tools for gene therapy. We recently developed a ZF transcription repressor (ZF-KOX1) able to bind to expanded DNA CAG-repeats in the huntingtin (HTT) gene, which are found in Huntington's disease (HD). This ZF acutely repressed mutant HTT expression in a mouse model of HD and delayed neurological symptoms (clasping) for up to 3 weeks. In the present work, we sought to develop a long-term single-injection gene therapy approach in the brain. Method: Since non-self proteins can elicit immune and inflammatory responses, we designed a host-matched analogue of ZF-KOX1 (called mZF-KRAB), to treat mice more safely in combination with rAAV vector delivery. We also tested a neuron-specific enolase promoter (pNSE), which has been reported as enabling long-term transgene expression, to see whether HTT repression could be observed for up to 6 months after AAV injection in the brain. Results: After rAAV vector delivery, we found that non-self proteins induce significant inflammatory responses in the brain, in agreement with previous studies. Specifically, microglial cells were activated at 4 and 6 weeks after treatment with non-host-matched ZF-KOX1 or GFP, respectively, and this was accompanied by a moderate neuronal loss. In contrast, the host-matched mZF-KRAB did not provoke these effects. Nonetheless, we found that using a pCAG promoter (CMV early enhancer element and the chicken beta-actin promoter) led to a strong reduction in ZF expression by 6 weeks after injection. We therefore tested a new non-viral promoter to see whether the host-adapted ZF expression could be sustained for a longer time. Vectorising mZF-KRAB with a promoter-enhancer from neuron-specific enolase (Eno2, rat) resulted in up to 77 % repression of mutant HTT in whole brain, 3 weeks after bilateral intraventricular injection of 1010 virions. Importantly, repressions of 48 % and 23 % were still detected after 12 and 24 weeks, respectively, indicating that longer term effects are possible. Conclusion: Host-adapted ZF-AAV constructs displayed a reduced toxicity and a non-viral pNSE promoter improved long-term ZF protein expression and target gene repression. The optimized constructs presented here have potential for treating HD.

AccesS level

DOAJ Gold, Green Published

Mentions data

PAPER MENTIONS
Neuroscience & Behavior
  •   Twitter
  • 23
  •   Wikipedia
  • 0
  •   News
  • 18
  •   Policy
  • 0

Mentions Chart

Influratio by dimension
  • Twitter
  • Wikipedia
  • News
  • Policy
PAPER MENTIONS
  •   Twitter
  • 23
  •   Wikipedia
  • 0
  •   News
  • 18
  •   Policy
  • 0
PROYECTO FINANCIADO POR PLAN NACIONAL DE INVESTIGACIÓN AGENCIA ESTATAL DE INVESTIGACIÓN, MINISTERIO DE CIENCIA E INNOVACIÓN. PID2019-109127RB-I00