Understanding the timing and variation of greenhouse gas emissions of forest bioenergy systems
Roder, Mirjam; Thiffault, Evelyne; Martinez-Alonso, Celia; Senez-Gagnon, Fanny; Paradis, Laurence; Thornley, Patricia
BIOMASS & BIOENERGY
2019
VL / 121 - BP / 99 - EP / 114
abstract
Forest-based bioenergy plays an important role in climate mitigation for limiting global mean temperature increase to below 2 degrees C. The greenhouse gas (GHG) impact of three forest-based bioenergy systems from the USA, Canada and Spain supplying wood pellets for electricity in the UK were evaluated by conducting lifecycle assessments and forest carbon modelling of the three forest systems. Cumulative emissions were analysed by calculating the forest carbon stock change and net GHG emissions balance of the forest-based bioenergy electricity. The analysis considered both the replacement of the existing electricity mix with bioenergy electricity and forest management with and without bioenergy use. The supply chain emissions and forest carbon balances indicated that GHG emission reductions are possible. However, the cumulative net GHG balance at forest landscape scale revealed that the reduction potential is limited, potentially with no GHG reductions in fast growing forests with shorter rotations, while slow growing forest systems with longer rotations result in greater GHG reductions. This means that the maximum climate benefit is delivered at a different point in time for different forest systems. To evaluate the climate change mitigation potential of forest-based bioenergy it is therefore necessary to consider the management, utilisation and relevant counterfactual of the whole forest and its products. In terms of climate change mitigation potential and minimising possible negative impacts that would require multi-level governance.
MENTIONS DATA
Engineering
-
0 Twitter
-
7 Wikipedia
-
1 News
-
18 Policy
Among papers in Engineering
Más información
Influscience
Rankings
- BETA VERSION