MENU

Cylindrical Micelles by the Self-Assembly of Crystalline-b-Coil Polyphosphazene-b-P2VP Block Copolymers. Stabilization of Gold Nanoparticles

de los Angeles Cortes, Maria; De la Campa, Raquel; Luisa Valenzuela, Maria; Diaz, Carlos; Carriedo, Gabino A.; Presa Soto, Alejandro

MOLECULES
2019
VL / 24 - BP / - EP /
abstract
During the last number of years a variety of crystallization-driven self-assembly (CDSA) processes based on semicrystalline block copolymers have been developed to prepare a number of different nanomorphologies in solution (micelles). We herein present a convenient synthetic methodology combining: (i) The anionic polymerization of 2-vinylpyridine initiated by organolithium functionalized phosphane initiators; (ii) the cationic polymerization of iminophosphoranes initiated by -PR2Cl2; and (iii) a macromolecular nucleophilic substitution step, to prepare the novel block copolymers poly(bistrifluoroethoxy phosphazene)-b-poly(2-vinylpyridine) (PTFEP-b-P2VP), having semicrystalline PTFEP core forming blocks. The self-assembly of these materials in mixtures of THF (tetrahydrofuran) and 2-propanol (selective solvent to P2VP), lead to a variety of cylindrical micelles of different lengths depending on the amount of 2-propanol added. We demonstrated that the crystallization of the PTFEP at the core of the micelles is the main factor controlling the self-assembly processes. The presence of pyridinyl moieties at the corona of the micelles was exploited to stabilize gold nanoparticles (AuNPs).

AccesS level

Green published, Green submitted, Gold

MENTIONS DATA