MENU

On the Use of Probabilistic Worst-Case Execution Time Estimation for Parallel Applications in High Performance Systems

Fusi, Matteo; Mazzocchetti, Fabio; Farres, Albert; Kosmidis, Leonidas; Canal, Ramon; Cazorla, Francisco J.; Abella, Jaume

MATHEMATICS
2020
VL / 8 - BP / - EP /
abstract
Some high performance computing (HPC) applications exhibit increasing real-time requirements, which call for effective means to predict their high execution times distribution. This is a new challenge for HPC applications but a well-known problem for real-time embedded applications where solutions already exist, although they target low-performance systems running single-threaded applications. In this paper, we show how some performance validation and measurement-based practices for real-time execution time prediction can be leveraged in the context of HPC applications on high-performance platforms, thus enabling reliable means to obtain real-time guarantees for those applications. In particular, the proposed methodology uses coordinately techniques that randomly explore potential timing behavior of the application together with Extreme Value Theory (EVT) to predict rare (and high) execution times to, eventually, derive probabilistic Worst-Case Execution Time (pWCET) curves. We demonstrate the effectiveness of this approach for an acoustic wave inversion application used for geophysical exploration.

AccesS level

Gold DOAJ, Green published

MENTIONS DATA