MENU

Search for Nova Presolar Grains: gamma-Ray Spectroscopy of Ar-34 and its Relevance for the Astrophysical Cl-33(p,gamma) Reaction

Kennington, A. R. L.; Lotay, G.; Doherty, D. T.; Seweryniak, D.; Andreoiu, C.; Auranen, K.; Carpenter, M. P.; Catford, W. N.; Deibel, C. M.; Hadynska-Klek, K.; Hallam, S.; Hoff, D. E. M.; Huang, T.; Janssens, R. V. F.; Jazrawi, S.; Jose, J.; Kondev, F. G.;

PHYSICAL REVIEW LETTERS
2020
VL / 124 - BP / - EP /
abstract
The discovery of presolar grains in primitive meteorites has initiated a new era of research in the study of stellar nucleosynthesis. However, the accurate classification of presolar grains as being of specific stellar origins is particularly challenging. Recently, it has been suggested that sulfur isotopic abundances may hold the key to definitively identifying presolar grains with being of nova origins and, in this regard, the astrophysical Cl-33(p, gamma)Ar-34 reaction is expected to play a decisive role. As such, we have performed a detailed y-ray spectroscopy study of Ar-34. Excitation energies have been measured with high precision and spin-parity assignments for resonant states, located above the proton threshold in Ar-34, have been made for the first time. Uncertainties in the Cl-33(p, gamma) reaction have been dramatically reduced and the results indicate that a newly identified l = 0 resonance at E-r = 396.9(13) keV dominates the entire rate for T = 0.25-0.40 GK. Furthermore, nova hydrodynamic simulations based on the present work indicate an ejected S-32/S-33 abundance ratio distinctive from type-II supernovae and potentially compatible with recent measurements of a presolar grain.

AccesS level

Green published, Green submitted

MENTIONS DATA