MENU

General relativistic effects acting on the orbits of Galileo satellites

Sosnica, K.; Bury, G.; Zajdel, R.; Kazmierski, K.; Ventura-Traveset, J.; Prieto-Cerdeira, R.; Mendes, L.

CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY
2021
VL / 133 - BP / - EP /
abstract
The first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)-Galileo-has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense-Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense-Thirring effect is not.

AccesS level

Hybrid

MENTIONS DATA