Statistical properties of mutualistic-competitive random networks
Martinez-Martinez, C. T.; Mendez-Bermudez, J. A.; Peron, Thomas; Moreno, Yamir
CHAOS SOLITONS & FRACTALS
2021
VL / 153 - BP / - EP /
abstract
Mutualistic networks are used to study the structure and processes inherent to mutualistic relationships. In this paper, we introduce a random matrix ensemble (RME) representing the adjacency matrices of mutualistic networks composed by two vertex sets of sizes n and m - n. Our RME depends on three parameters: the network size 11, the size of the smaller set m, and the connectivity between the two sets alpha, where alpha is the ratio of current adjacent pairs over the total number of possible adjacent pairs between the sets. We focus on the spectral, eigenvector and topological properties of the RME by computing, respectively, the ratio of consecutive eigenvalue spacings r, the Shannon entropy of the eigenvectors S, and the RandiC index R. First, within a random matrix theory approach (i.e. a statistical approach), we identify a parameter xi xi (n, m, alpha) that scales the average normalized measures < <(X)over bar> > (with X representing r, S and R). Specifically, we show that (i) xi proportional to alpha n with a weak dependence on m, and (ii) for xi < 1/10 most vertices in the mutualistic network are isolated, while for xi > 10 the network acquires the properties of a complete network, i.e., the transition from isolated vertices to a complete-like behavior occurs in the interval 1/10 < xi < 10. Then, we demonstrate that our statistical approach predicts reasonably well the properties of real-world mutualistic networks; that is, the universal curves < <(X)over bar> > vs. xi show good correspondence with the properties of real-world networks. (C) 2021 Elsevier Ltd. All rights reserved.
MENTIONS DATA
Mathematics
-
0 Twitter
-
0 Wikipedia
-
0 News
-
28 Policy
Among papers in Mathematics
Más información
Influscience
Rankings
- BETA VERSION